Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.897
Filtrar
1.
Sheng Li Xue Bao ; 76(2): 301-308, 2024 Apr 25.
Artículo en Chino | MEDLINE | ID: mdl-38658378

RESUMEN

Delayed-onset muscle soreness (DOMS) is a common phenomenon that occurs following a sudden increase in exercise intensity or unfamiliar exercise, significantly affecting athletic performance and efficacy in athletes and fitness individuals. DOMS is characterized by allodynia and hyperalgesia, and their mechanisms remain unclear. Recent studies have reported that neurotrophic factors, such as nerve growth factor (NGF) and glial cell derived neurotrophic factor (GDNF), are involved in the development and maintenance of DOMS. This article provides a review of the research progress on the signaling pathways related to the involvement of NGF and GDNF in DOMS, hoping to provide novel insights into the mechanisms underlying allodynia and hyperalgesia in DOMS, as well as potential targeted treatment.


Asunto(s)
Factor Neurotrófico Derivado de la Línea Celular Glial , Mialgia , Factor de Crecimiento Nervioso , Humanos , Mialgia/fisiopatología , Factor de Crecimiento Nervioso/metabolismo , Factor de Crecimiento Nervioso/fisiología , Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Factor Neurotrófico Derivado de la Línea Celular Glial/fisiología , Transducción de Señal , Animales , Hiperalgesia/fisiopatología , Músculo Esquelético/fisiopatología , Músculo Esquelético/fisiología , Ejercicio Físico/fisiología
2.
Phys Ther ; 102(12)2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36124704

RESUMEN

OBJECTIVE: The nociceptive pain processing of soft-tissue overuse conditions is under debate because no consensus currently exists. The purpose of this meta-analysis was to compare pressure pain thresholds (PPTs) in symptomatic and distant pain-free areas in 2 groups: participants with symptomatic lower extremity overuse soft-tissue conditions and controls who were pain free. METHODS: Five databases were searched from inception to December 1, 2021, for case-control studies comparing PPTs between individuals presenting with symptomatic lower extremity tendinopathy/overuse injury and controls who were pain free. Data extraction included population, diagnosis, sample size, outcome, type of algometer, and results. The methodological quality (Newcastle-Ottawa Quality Assessment Scale) and evidence level (Grading of Recommendations Assessment, Development, and Evaluation) were assessed. Meta-analyses of symptomatic, segmental related, and distant pain-free areas were compared. RESULTS: After screening 730 titles and abstracts, a total of 19 studies evaluating lower extremity overuse conditions (Achilles or patellar tendinopathy, greater trochanteric pain syndrome, plantar fasciitis, and iliotibial band syndrome) were included. The methodological quality ranged from fair (32%) to good (68%). Participants with lower extremity overuse injury had lower PPTs in both the painful and nonpainful areas, mirrored test-site, compared with controls (affected side: mean difference [MD] = -262.92 kPa, 95% CI = 323.78 to -202.05 kPa; nonaffected side: MD = -216.47 kPa, 95% CI = -304.99 to -127.95 kPa). Furthermore, people with plantar fasciitis showed reduced PPTs in the affected and nonaffected sides at segmental-related (MD = -176.39 kPa, 95% CI = -306.11 to -46.68 kPa) and distant pain-free (MD = -97.27 kPa, 95% CI = 133.21 to -61.33 kPa) areas compared with controls. CONCLUSION: Low- to moderate-quality evidence suggests a reduction of PPTs at the symptomatic area and a contralateral/mirror side in lower extremity tendinopathies and overuse conditions compared with pain-free controls, particularly in plantar fasciitis and greater trochanteric pain syndrome. Participants with plantar fasciitis showed a reduction of PPTs on the affected and non-affected sides at a segmental-related area (very low-quality evidence) and at a remote asymptomatic area (moderate-quality evidence). IMPACT: Some overuse peripheral pain conditions may be more associated with pressure pain sensitivity than others. Accordingly, examination and identification of conditions more peripherally, centrally, or mixed mediated could potentially lead to more specific and different treatment strategies.


Asunto(s)
Trastornos de Traumas Acumulados , Hiperalgesia , Umbral del Dolor , Tendinopatía , Hiperalgesia/diagnóstico , Hiperalgesia/etiología , Hiperalgesia/fisiopatología , Humanos , Tendinopatía/complicaciones , Trastornos de Traumas Acumulados/complicaciones , Dimensión del Dolor , Presión , Extremidad Inferior
3.
Proc Natl Acad Sci U S A ; 119(30): e2114094119, 2022 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-35858441

RESUMEN

Clinical evidence suggests that pain hypersensitivity develops in patients with attention-deficit/hyperactivity disorder (ADHD). However, the mechanisms and neural circuits involved in these interactions remain unknown because of the paucity of studies in animal models. We previously validated a mouse model of ADHD obtained by neonatal 6-hydroxydopamine (6-OHDA) injection. Here, we have demonstrated that 6-OHDA mice exhibit a marked sensitization to thermal and mechanical stimuli, suggesting that phenotypes associated with ADHD include increased nociception. Moreover, sensitization to pathological inflammatory stimulus is amplified in 6-OHDA mice as compared to shams. In this ADHD model, spinal dorsal horn neuron hyperexcitability was observed. Furthermore, ADHD-related hyperactivity and anxiety, but not inattention and impulsivity, are worsened in persistent inflammatory conditions. By combining in vivo electrophysiology, optogenetics, and behavioral analyses, we demonstrated that anterior cingulate cortex (ACC) hyperactivity alters the ACC-posterior insula circuit and triggers changes in spinal networks that underlie nociceptive sensitization. Altogether, our results point to shared mechanisms underlying the comorbidity between ADHD and nociceptive sensitization. This interaction reinforces nociceptive sensitization and hyperactivity, suggesting that overlapping ACC circuits may be targeted to develop better treatments.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Hiperalgesia , Dolor , Animales , Trastorno por Déficit de Atención con Hiperactividad/fisiopatología , Modelos Animales de Enfermedad , Giro del Cíngulo/fisiopatología , Hiperalgesia/inducido químicamente , Hiperalgesia/fisiopatología , Conducta Impulsiva , Ratones , Optogenética , Oxidopamina/farmacología , Dolor/inducido químicamente , Dolor/fisiopatología , Simpaticolíticos/farmacología
4.
Science ; 377(6601): 80-86, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35617374

RESUMEN

Activation of microglia in the spinal cord dorsal horn after peripheral nerve injury contributes to the development of pain hypersensitivity. How activated microglia selectively enhance the activity of spinal nociceptive circuits is not well understood. We discovered that after peripheral nerve injury, microglia degrade extracellular matrix structures, perineuronal nets (PNNs), in lamina I of the spinal cord dorsal horn. Lamina I PNNs selectively enwrap spinoparabrachial projection neurons, which integrate nociceptive information in the spinal cord and convey it to supraspinal brain regions to induce pain sensation. Degradation of PNNs by microglia enhances the activity of projection neurons and induces pain-related behaviors. Thus, nerve injury-induced degradation of PNNs is a mechanism by which microglia selectively augment the output of spinal nociceptive circuits and cause pain hypersensitivity.


Asunto(s)
Hiperalgesia , Microglía , Dolor , Traumatismos de los Nervios Periféricos , Asta Dorsal de la Médula Espinal , Animales , Matriz Extracelular/patología , Hiperalgesia/etiología , Hiperalgesia/patología , Hiperalgesia/fisiopatología , Microglía/patología , Dolor/patología , Dolor/fisiopatología , Traumatismos de los Nervios Periféricos/complicaciones , Traumatismos de los Nervios Periféricos/patología , Ratas , Ratas Sprague-Dawley , Asta Dorsal de la Médula Espinal/patología , Asta Dorsal de la Médula Espinal/fisiopatología
5.
Nature ; 606(7912): 137-145, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35614217

RESUMEN

Nerve injury leads to chronic pain and exaggerated sensitivity to gentle touch (allodynia) as well as a loss of sensation in the areas in which injured and non-injured nerves come together1-3. The mechanisms that disambiguate these mixed and paradoxical symptoms are unknown. Here we longitudinally and non-invasively imaged genetically labelled populations of fibres that sense noxious stimuli (nociceptors) and gentle touch (low-threshold afferents) peripherally in the skin for longer than 10 months after nerve injury, while simultaneously tracking pain-related behaviour in the same mice. Fully denervated areas of skin initially lost sensation, gradually recovered normal sensitivity and developed marked allodynia and aversion to gentle touch several months after injury. This reinnervation-induced neuropathic pain involved nociceptors that sprouted into denervated territories precisely reproducing the initial pattern of innervation, were guided by blood vessels and showed irregular terminal connectivity in the skin and lowered activation thresholds mimicking low-threshold afferents. By contrast, low-threshold afferents-which normally mediate touch sensation as well as allodynia in intact nerve territories after injury4-7-did not reinnervate, leading to an aberrant innervation of tactile end organs such as Meissner corpuscles with nociceptors alone. Genetic ablation of nociceptors fully abrogated reinnervation allodynia. Our results thus reveal the emergence of a form of chronic neuropathic pain that is driven by structural plasticity, abnormal terminal connectivity and malfunction of nociceptors during reinnervation, and provide a mechanistic framework for the paradoxical sensory manifestations that are observed clinically and can impose a heavy burden on patients.


Asunto(s)
Hiperalgesia , Neuralgia , Nociceptores , Piel , Animales , Dolor Crónico/fisiopatología , Hiperalgesia/fisiopatología , Mecanorreceptores/patología , Ratones , Neuralgia/fisiopatología , Nociceptores/patología , Piel/inervación , Piel/fisiopatología
6.
Science ; 376(6588): 86-90, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35357926

RESUMEN

Neuropathic pain is often caused by injury and diseases that affect the somatosensory system. Although pain development has been well studied, pain recovery mechanisms remain largely unknown. Here, we found that CD11c-expressing spinal microglia appear after the development of behavioral pain hypersensitivity following nerve injury. Nerve-injured mice with spinal CD11c+ microglial depletion failed to recover spontaneously from this hypersensitivity. CD11c+ microglia expressed insulin-like growth factor-1 (IGF1), and interference with IGF1 signaling recapitulated the impairment in pain recovery. In pain-recovered mice, the depletion of CD11c+ microglia or the interruption of IGF1 signaling resulted in a relapse in pain hypersensitivity. Our findings reveal a mechanism for the remission and recurrence of neuropathic pain, providing potential targets for therapeutic strategies.


Asunto(s)
Dolor Crónico/fisiopatología , Hiperalgesia/fisiopatología , Microglía/fisiología , Neuralgia/fisiopatología , Traumatismos de los Nervios Periféricos/fisiopatología , Médula Espinal/fisiopatología , Animales , Proteínas Bacterianas/genética , Antígenos CD11/genética , Antígenos CD11/metabolismo , Femenino , Proteínas Luminiscentes/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Recurrencia
7.
Nat Commun ; 13(1): 646, 2022 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-35115501

RESUMEN

Efficacy of monoclonal antibodies against calcitonin gene-related peptide (CGRP) or its receptor (calcitonin receptor-like receptor/receptor activity modifying protein-1, CLR/RAMP1) implicates peripherally-released CGRP in migraine pain. However, the site and mechanism of CGRP-evoked peripheral pain remain unclear. By cell-selective RAMP1 gene deletion, we reveal that CGRP released from mouse cutaneous trigeminal fibers targets CLR/RAMP1 on surrounding Schwann cells to evoke periorbital mechanical allodynia. CLR/RAMP1 activation in human and mouse Schwann cells generates long-lasting signals from endosomes that evoke cAMP-dependent formation of NO. NO, by gating Schwann cell transient receptor potential ankyrin 1 (TRPA1), releases ROS, which in a feed-forward manner sustain allodynia via nociceptor TRPA1. When encapsulated into nanoparticles that release cargo in acidified endosomes, a CLR/RAMP1 antagonist provides superior inhibition of CGRP signaling and allodynia in mice. Our data suggest that the CGRP-mediated neuronal/Schwann cell pathway mediates allodynia associated with neurogenic inflammation, contributing to the algesic action of CGRP in mice.


Asunto(s)
Péptido Relacionado con Gen de Calcitonina/metabolismo , Endosomas/metabolismo , Hiperalgesia/fisiopatología , Células de Schwann/metabolismo , Transducción de Señal/fisiología , Animales , Proteína Similar al Receptor de Calcitonina/genética , Proteína Similar al Receptor de Calcitonina/metabolismo , Células Cultivadas , Femenino , Células HEK293 , Humanos , Hiperalgesia/diagnóstico , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Persona de Mediana Edad , Neuronas/metabolismo , Óxido Nítrico/metabolismo , Proteína 1 Modificadora de la Actividad de Receptores/genética , Proteína 1 Modificadora de la Actividad de Receptores/metabolismo , Canal Catiónico TRPA1/genética , Canal Catiónico TRPA1/metabolismo
8.
Front Immunol ; 13: 811402, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35185905

RESUMEN

Joint pain is a complex phenomenon that involves multiple endogenous mediators and pathophysiological events. In addition to nociceptive and inflammatory pain, some patients report neuropathic-like pain symptoms. Examination of arthritic joints from humans and preclinical animal models have revealed axonal damage which is likely the source of the neuropathic pain. The mediators responsible for joint peripheral neuropathy are obscure, but lysophosphatidic acid (LPA) has emerged as a leading candidate target. In the present study, male and female Wistar rats received an intra-articular injection of LPA into the right knee and allowed to recover for 28 days. Joint pain was measured by von Frey hair algesiometry, while joint pathology was determined by scoring of histological sections. Both male and female rats showed comparable degenerative changes to the LPA-treated knee including chondrocyte death, focal bone erosion, and synovitis. Mechanical withdrawal thresholds decreased by 20-30% indicative of secondary allodynia in the affected limb; however, there was no significant difference in pain sensitivity between the sexes. Treatment of LPA animals with the neuropathic pain drug amitriptyline reduced joint pain for over 2 hours with no sex differences being observed. In summary, intra-articular injection of LPA causes joint degeneration and neuropathic pain thereby mimicking some of the characteristics of neuropathic osteoarthritis.


Asunto(s)
Artralgia/fisiopatología , Artritis Experimental/fisiopatología , Articulación de la Rodilla/patología , Lisofosfolípidos/administración & dosificación , Neuralgia/fisiopatología , Animales , Artralgia/inducido químicamente , Artralgia/patología , Artritis Experimental/inducido químicamente , Artritis Experimental/patología , Modelos Animales de Enfermedad , Femenino , Hiperalgesia/fisiopatología , Inyecciones Intraarticulares , Masculino , Neuralgia/inducido químicamente , Neuralgia/patología , Umbral del Dolor , Ratas , Ratas Wistar
9.
Invest Ophthalmol Vis Sci ; 63(1): 7, 2022 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-34989761

RESUMEN

Purpose: Dry eye-induced chronic ocular pain is also called ocular neuropathic pain. However, details of the pathogenic mechanism remain unknown. The purpose of this study was to elucidate the pathogenic mechanism of dry eye-induced chronic pain in the anterior eye area and develop a pathophysiology-based therapeutic strategy. Methods: We used a rat dry eye model with lacrimal gland excision (LGE) to elucidate the pathogenic mechanism of ocular neuropathic pain. Corneal epithelial damage, hypersensitivity, and hyperalgesia were evaluated on the LGE side and compared with the sham surgery side. We analyzed neuronal activity, microglial and astrocytic activity, α2δ-1 subunit expression, and inhibitory interneurons in the trigeminal nucleus. We also evaluated the therapeutic effects of ophthalmic treatment and chronic pregabalin administration on dry eye-induced ocular neuropathic pain. Results: Dry eye caused hypersensitivity and hyperalgesia on the LGE side. In the trigeminal nucleus of the LGE side, neuronal hyperactivation, transient activation of microglia, persistent activation of astrocytes, α2δ-1 subunit upregulation, and reduced numbers of inhibitory interneurons were observed. Ophthalmic treatment alone did not improve hyperalgesia. In contrast, continuous treatment with pregabalin effectively ameliorated hypersensitivity and hyperalgesia and normalized neural activity, α2δ-1 subunit upregulation, and astrocyte activation. Conclusions: These results suggest that dry eye-induced hypersensitivity and hyperalgesia are caused by central sensitization in the trigeminal nucleus with upregulation of the α2δ-1 subunit. Here, we showed that pregabalin is effective for treating dry eye-induced ocular neuropathic pain even after chronic pain has been established.


Asunto(s)
Analgésicos/administración & dosificación , Modelos Animales de Enfermedad , Síndromes de Ojo Seco/fisiopatología , Dolor Ocular/fisiopatología , Pregabalina/administración & dosificación , Administración Oftálmica , Animales , Astrocitos/patología , Canales de Calcio Tipo L/metabolismo , Enfermedad Crónica , Córnea/inervación , Síndromes de Ojo Seco/tratamiento farmacológico , Dolor Ocular/tratamiento farmacológico , Ácido Hialurónico/administración & dosificación , Hiperalgesia/tratamiento farmacológico , Hiperalgesia/fisiopatología , Masculino , Microglía/patología , Neuralgia/tratamiento farmacológico , Neuralgia/fisiopatología , Neuronas/metabolismo , Neuronas/patología , Soluciones Oftálmicas , Ratas , Ratas Sprague-Dawley , Nervio Trigémino/metabolismo , Nervio Trigémino/patología
10.
Behav Pharmacol ; 33(1): 23-31, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35007233

RESUMEN

The monoiodoacetate-induced rat model of osteoarthritis knee pain is widely used. However, there are between-study differences in the pain behavioural endpoints assessed and in the dose of intraarticular monoiodoacetate administered. This study evaluated the robustness of gait analysis as a pain behavioural endpoint in the chronic phase of this model, in comparison with mechanical hyperalgesia in the injected (ipsilateral) joint and development of mechanical allodynia in the ipsilateral hind paws. Groups of Sprague-Dawley rats received a single intraarticular injection of monoiodoacetate at 0.5, 1, 2 or 3 mg or vehicle (saline) into the left (ipsilateral) knee joint. An additional group of rats were not injected (naïve group). The pain behavioural methods used were gait analysis, measurement of pressure algometry thresholds in the ipsilateral knee joints, and assessment of mechanical allodynia in the ipsilateral hind paws using von Frey filaments. These pain behavioural endpoints were assessed premonoiodoacetate injection and for up to 42-days postmonoiodoacetate injection in a blinded manner. Body weights were also assessed as a measure of general health. Good general health was maintained as all rats gained weight at a similar rate for the 42-day study period. In the chronic phase of the model (days 9-42), intraarticular monoiodoacetate at 3 mg evoked robust alterations in multiple gait parameters as well as persistent mechanical allodynia in the ipsilateral hind paws. For the chronic phase of the monoiodoacetate-induced rat model of osteoarthritis knee pain, gait analysis, such as mechanical allodynia in the ipsilateral hind paws, is a robust pain behavioural measure.


Asunto(s)
Artralgia , Síntomas Conductuales , Análisis de la Marcha/métodos , Hiperalgesia , Osteoartritis , Dolor , Animales , Artralgia/inducido químicamente , Artralgia/psicología , Técnicas de Observación Conductual/métodos , Conducta Animal , Síntomas Conductuales/diagnóstico , Síntomas Conductuales/fisiopatología , Modelos Animales de Enfermedad , Inhibidores Enzimáticos/administración & dosificación , Hiperalgesia/diagnóstico , Hiperalgesia/fisiopatología , Hiperalgesia/psicología , Ácido Yodoacético/administración & dosificación , Osteoartritis/fisiopatología , Osteoartritis/psicología , Dolor/fisiopatología , Dolor/psicología , Ratas , Ratas Sprague-Dawley
11.
Naunyn Schmiedebergs Arch Pharmacol ; 395(3): 325-335, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34985531

RESUMEN

Recent studies indicate presence of a strong link between adipokines and neuropathic pain. However, the effects of asprosin, a novel adipokine, on neuropathic pain have not been studied in animal models.Mouse models were employed to investigate the antinociceptive effectiveness of asprosin in the treatment of three types of neuropathic pain, with metabolic (streptozocin/STZ), toxic (oxaliplatin/OXA), and traumatic (sciatic nerve ligation/CCI [chronic constriction nerve injury]) etiologies, respectively. Changes in nociceptive behaviors were assessed relative to controls using thermal (the hot plate and cold plate tests, at 50 °C and 4 °C respectively) and mechanical pain (von Frey test) tests after intraperitoneal (i.p.) administration of asprosin (10 µg/kg) and gabapentin (50 mg/kg) in several times intervals. Besides, possible effect of asprosin on the motor coordination of mice was assessed with a rotarod test. Serum level of asprosin was quantified by ELISA.In neuropathic pain models (STZ, OXA, and CCI), asprosin administration significantly reduced both mechanical and thermal hypersensitivity, indicating that it exhibits a clear-cut antihypersensitivity effect in the analyzed neuropathic pain models. The most effective time of asprosin on pain threshold was observed 60 min after its injection. Also, asprosin displayed no notable effect on the motor activity. Asprosin levels were significantly lower in neuropathic pain compared to healthy group (p < 0.05).The results yielded by the present study suggest that asprosin exhibits an analgesic effect in the neuropathic pain models and may have clinical utility in alleviating chronic pain associated with disease and injury originating from peripheral structures.


Asunto(s)
Analgésicos/farmacología , Fibrilina-1/farmacología , Hiperalgesia/tratamiento farmacológico , Neuralgia/tratamiento farmacológico , Fragmentos de Péptidos/farmacología , Hormonas Peptídicas/farmacología , Analgésicos/administración & dosificación , Animales , Modelos Animales de Enfermedad , Fibrilina-1/administración & dosificación , Gabapentina/farmacología , Hiperalgesia/fisiopatología , Masculino , Ratones , Ratones Endogámicos BALB C , Neuralgia/fisiopatología , Umbral del Dolor , Fragmentos de Péptidos/administración & dosificación , Hormonas Peptídicas/administración & dosificación , Prueba de Desempeño de Rotación con Aceleración Constante
12.
World J Gastroenterol ; 28(48): 6935-6949, 2022 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-36632316

RESUMEN

BACKGROUND: Irritable bowel syndrome and bladder pain syndrome often overlap and are both characterized by visceral hypersensitivity. Since pelvic organs share common sensory pathways, it is likely that those syndromes involve a cross-sensitization of the bladder and the colon. The precise pathophysiology remains poorly understood. AIM: To develop a model of chronic bladder-colon cross-sensitization and to investigate the mech-anisms involved. METHODS: Chronic cross-organ visceral sensitization was obtained in C57BL/6 mice using ultrasound-guided intravesical injections of acetic acid under brief isoflurane anesthesia. Colorectal sensitivity was assessed in conscious mice by measuring intracolonic pressure during isobaric colorectal distensions. Myeloperoxidase, used as a marker of colorectal inflammation, was measured in the colon, and colorectal permeability was measured using chambers. c-Fos protein expression, used as a marker of neuronal activation, was assessed in the spinal cord (L6-S1 level) using immunohistochemistry. Green fluorescent protein on the fractalkine receptor-positive mice were used to identify and count microglia cells in the L6-S1 dorsal horn of the spinal cord. The expression of NK1 receptors and MAPK-p38 were quantified in the spinal cord using western blot. RESULTS: Visceral hypersensitivity to colorectal distension was observed after the intravesical injection of acetic acid vs saline (P < 0.0001). This effect started 1 h post-injection and lasted up to 7 d post-injection. No increased permeability or inflammation was shown in the bladder or colon 7 d post-injection. Visceral hypersensitivity was associated with the increased expression of c-Fos protein in the spinal cord (P < 0.0001). In green fluorescent protein on the fractalkine receptor-positive mice, intravesical acetic acid injection resulted in an increased number of microglia cells in the L6-S1 dorsal horn of the spinal cord (P < 0.0001). NK1 receptor and MAPK-p38 levels were increased in the spinal cord up to 7 d after injection (P = 0.007 and 0.023 respectively). Colorectal sensitization was prevented by intrathecal or intracerebroventricular injections of minocycline, a microglia inhibitor, by intracerebroventricular injection of CP-99994 dihydrochloride, a NK1 antagonist, and by intracerebroventricular injection of SB203580, a MAPK-p38 inhibitor. CONCLUSION: We describe a new model of cross-organ visceral sensitization between the bladder and the colon in mice. Intravesical injections of acetic acid induced a long-lasting colorectal hypersensitivity to distension, mediated by neuroglial interactions, MAPK-p38 phosphorylation and the NK1 receptor.


Asunto(s)
Dolor Crónico , Colon , Hiperalgesia , Microglía , Vejiga Urinaria , Dolor Visceral , Animales , Masculino , Ratones , Ratas , Receptor 1 de Quimiocinas CX3C/metabolismo , Proteínas Fluorescentes Verdes , Inflamación/metabolismo , Ratones Endogámicos C57BL , Proteínas Proto-Oncogénicas c-fos/metabolismo , Proteínas Proto-Oncogénicas c-fos/farmacología , Ratas Sprague-Dawley , Médula Espinal/fisiopatología , Vejiga Urinaria/inervación , Vejiga Urinaria/fisiopatología , Dolor Visceral/fisiopatología , Colon/inervación , Colon/fisiopatología , Hiperalgesia/fisiopatología , Dolor Crónico/fisiopatología , Microglía/fisiología
13.
Neurosci Lett ; 770: 136401, 2022 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-34929317

RESUMEN

Psychological stress has been demonstrated to increase reports of pain in humans with pelvic pain of urologic origin. In rodent models, conditioning with acute footshock (AFS) has been demonstrated to increase measures of stress/anxiety as well as bladder hypersensitivity. The spinal neurochemical mechanisms of this pro-nociceptive process are unknown and so the present study administered antagonists for multiple receptors that have been associated with facilitatory mechanisms into the spinal intrathecal space. Bladder hypersensitivity was induced through use of an AFS paradigm in which female Sprague-Dawley rats received a 15-min intermittent shock treatment. Visceromotor responses (VMRs; abdominal muscle contractions) to air pressure-controlled urinary bladder distension (UBD) were used as nociceptive endpoints. Immediately following AFS treatments, rats were anesthetized (inhaled isoflurane, IP urethane) and surgically prepared. Pharmacological antagonists were administered via an intrathecal (IT) catheter onto the lumbosacral spinal cord and VMRs to graded UBD determined 15 min later. Administration of IT naloxone hydrochloride (10 µg) and IT phentolamine hydrochloride (10 µg) resulted in VMRs that were more robust than VMRs in rats that received AFS and IT normal saline whereas there was no significant effect of these drugs on VMRs in rats which underwent non-footshock procedures. In contrast, a low dose of the NMDA-receptor antagonist, MK-801 (30 µg), significantly reduced VMRs in rats made hypersensitive to UBD by AFS, but had no significant effect on rats that underwent non-footshock procedures. This study suggests that pro-nociceptive effects of AFS in otherwise healthy rats involve a spinal NMDA-linked mechanism. The effects of IT naloxone and IT phentolamine suggest the presence of inhibitory influences that are opioidergic and/or alpha-adrenergic and that are masked by the pro-nociceptive mechanisms. Other agents with no statistically significant effect on VMRs include methysergide (30 µg), ondansetron (10 µg), mecamylamine (50 µg), antalarmin (24 µg), aSVG30 (12 µg), and SSR149415 (50 µg).


Asunto(s)
Maleato de Dizocilpina/uso terapéutico , Antagonistas de Aminoácidos Excitadores/uso terapéutico , Hiperalgesia/tratamiento farmacológico , Médula Espinal/metabolismo , Vejiga Urinaria/metabolismo , Animales , Maleato de Dizocilpina/farmacología , Antagonistas de Aminoácidos Excitadores/farmacología , Femenino , Hiperalgesia/metabolismo , Hiperalgesia/fisiopatología , Ratas , Ratas Sprague-Dawley , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Receptores de N-Metil-D-Aspartato/metabolismo , Médula Espinal/efectos de los fármacos , Médula Espinal/fisiopatología , Estrés Fisiológico , Vejiga Urinaria/fisiopatología
14.
Headache ; 62(1): 11-25, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34967003

RESUMEN

OBJECTIVE: The aim of this study was to determine if prolactin signaling modulates stress-induced behavioral responses in a preclinical migraine model. BACKGROUND: Migraine is one of the most complex and prevalent disorders. The involvement of sex-selective hormones in migraine pathology is highly likely as migraine is more common in women and its frequency correlates with reproductive stages. Prolactin has been shown to be a worsening factor for migraine. Normally prolactin levels are low; however levels can surge during stress. Dopamine receptor agonists, which suppress pituitary prolactin release, are an effective migraine treatment in a subset of patients. Previously, we showed that administration of prolactin onto the dura mater induces female-specific behavioral responses, suggesting that prolactin may play a sex-specific role in migraine. METHODS: The effects of prolactin signaling were assessed using a preclinical migraine model we published recently in which behavioral sensitization is induced by repeated stress. Plasma prolactin levels were assessed in naïve and stressed CD-1 mice (n = 3-5/group) and transgenic mice with conditional deletion of the Prlr in Nav1.8-positive sensory neurons (Prlr conditional knock-out [CKO]; n = 3/group). To assess the contribution of prolactin release during stress, naïve or stressed male and female CD-1 mice were treated with the prolactin release inhibitor bromocriptine (2 mg/kg; n = 7-12/group) or vehicle for 5 days (8-12/group) and tested for facial hypersensitivity following stress. Additionally, the contribution of ovarian hormones in regulating the prolactin-induced responses was assessed in ovariectomized female CD-1 mice (n = 6-10/group). Furthermore, the contribution of Prlr activation on Nav1.8-positive sensory neurons was assessed. Naïve or stressed male and female Prlr CKO mice and their control littermates were tested for facial hypersensitivity (n = 8-9/group). Immunohistochemistry was used to confirm loss of Prlr in Nav1.8-positive neurons in Prlr CKO mice. The total sample size is n = 245; the full analysis sample size is n = 221. RESULTS: Stress significantly increased prolactin levels in vehicle-treated female mice (39.70 ± 2.77; p < 0.0001). Bromocriptine significantly reduced serum prolactin levels in stressed female mice compared to vehicle-treated mice (-44.85 ± 3.1; p < 0.0001). Additionally, no difference was detected between female stressed mice that received bromocriptine compared to naïve mice treated with bromocriptine (-0.70 ± 2.9; p = 0.995). Stress also significantly increased serum prolactin levels in male mice, although to a much smaller extent than in females (0.61 ± 0.08; p < 0.001). Bromocriptine significantly reduced serum prolactin levels in stressed males compared to those treated with vehicle (-0.49 ± 0.08; p = 0.002). Furthermore, bromocriptine attenuated stress-induced behavioral responses in female mice compared to those treated with vehicle (maximum effect observed on day 4 post stress [0.21 ± 0.08; p = 0.03]). Bromocriptine did not attenuate stress-induced behavior in males at any timepoint compared to those treated with vehicle. Moreover, loss of ovarian hormones did not affect the ability of bromocriptine to attenuate stress responses compared to vehicle-treated ovariectomy mice that were stressed (maximum effect observed on day 4 post stress [0.29 ± 0.078; p = 0.013]). Similar to CD-1 mice, stress increased serum prolactin levels in both Prlr CKO female mice (27.74 ± 9.96; p = 0.047) and control littermates (28.68 ± 9.9; p = 0.041) compared to their naïve counterparts. There was no significant increase in serum prolactin levels detected in male Prlr CKO mice or control littermates. Finally, conditional deletion of Prlr from Nav1.8-positive sensory neurons led to a female-specific attenuation of stress-induced behavioral responses (maximum effect observed on day 7 post stress [0.32 ± 0.08; p = 0.007]) compared to control littermates. CONCLUSION: These data demonstrate that prolactin plays a female-specific role in stress-induced behavioral responses in this preclinical migraine model through activation of Prlr on sensory neurons. They also support a role for prolactin in migraine mechanisms in females and suggest that modulation of prolactin signaling may be an effective therapeutic strategy in some cases.


Asunto(s)
Conducta Animal/fisiología , Bromocriptina/farmacología , Dolor Facial , Antagonistas de Hormonas/farmacología , Hiperalgesia , Trastornos Migrañosos , Prolactina/metabolismo , Caracteres Sexuales , Estrés Psicológico , Animales , Conducta Animal/efectos de los fármacos , Bromocriptina/administración & dosificación , Modelos Animales de Enfermedad , Dolor Facial/inducido químicamente , Dolor Facial/metabolismo , Dolor Facial/fisiopatología , Femenino , Antagonistas de Hormonas/administración & dosificación , Hiperalgesia/inducido químicamente , Hiperalgesia/metabolismo , Hiperalgesia/fisiopatología , Masculino , Ratones , Ratones Noqueados , Trastornos Migrañosos/metabolismo , Trastornos Migrañosos/fisiopatología , Ovariectomía , Prolactina/antagonistas & inhibidores , Prolactina/efectos de los fármacos , Receptores de Prolactina/genética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Estrés Psicológico/metabolismo , Estrés Psicológico/fisiopatología
15.
Behav Brain Res ; 418: 113650, 2022 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-34748865

RESUMEN

Pain experience is known to be modified by social factors, but the brain mechanisms remain unspecified. We recently established an animal model of social stress-induced hyperalgesia (SSIH) using a socially monogamous rodent, the prairie vole, in which males separated from their female partners (loss males) became anxious and displayed exacerbated inflammatory pain behaviors compared to males with partners (paired males). In the present study, to explore the neural pathways involved in SSIH, a difference in neuronal activation in pain-related brain regions, or "pain matrix", during inflammatory pain between paired and loss males was detected using Fos immunoreactivity (Fos-ir). Males were paired with a female and pair bonding was confirmed in all subjects using a partner preference test. During formalin-induced inflammatory pain, both paired and loss males showed a significant induction of Fos-ir throughout the analyzed pain matrix components compared to basal condition (without injection), and no group differences in immunoreactivity were found among the injected males in many brain regions. However, the loss males had significantly lower Fos-ir following inflammatory pain in the medial prefrontal cortex and nucleus accumbens shell than the paired males, even though base Fos-ir levels were comparable between groups. Notably, both regions with different Fos-ir are major components of the dopamine and oxytocin systems, which play critical roles in both pair bonding and pain regulation. The present results suggest the possibility that pain exacerbation by social stress emerges through alteration of signaling in social brain circuitry.


Asunto(s)
Hiperalgesia/fisiopatología , Inflamación , Vías Nerviosas/metabolismo , Dolor/metabolismo , Apareamiento , Roedores , Animales , Ansiedad , Arvicolinae/metabolismo , Encéfalo/metabolismo , Femenino , Masculino , Núcleo Accumbens/metabolismo , Oxitocina/metabolismo , Corteza Prefrontal/metabolismo
16.
J Neurochem ; 160(3): 376-391, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34757653

RESUMEN

Trigeminal neuralgia (TN) is a type of severe paroxysmal neuropathic pain commonly triggered by mild mechanical stimulation in the orofacial area. Piezo2, a mechanically gated ion channel that mediates tactile allodynia in neuropathic pain, can be potentiated by a cyclic adenosine monophosphate (cAMP)-dependent signaling pathway that involves the exchange protein directly activated by cAMP 1 (Epac1). To study whether Piezo2-mediated mechanotransduction contributes to peripheral sensitization in a rat model of TN after trigeminal nerve compression injury, the expression of Piezo2 and activation of cAMP signal-related molecules in the trigeminal ganglion (TG) were detected. Changes in purinergic P2 receptors in the TG were also studied by RNA-seq. The expression of Piezo2, cAMP, and Epac1 in the TG of the TN animals increased after chronic compression of the trigeminal nerve root (CCT) for 21 days, but Piezo2 knockdown by shRNA in the TG attenuated orofacial mechanical allodynia. Purinergic P2 receptors P2X4, P2X7, P2Y1, and P2Y2 were significantly up-regulated after CCT injury. In vitro, Piezo2 expression in TG neurons was significantly increased by exogenous adenosine 5'-triphosphate (ATP) and Ca2+ ionophore ionomycin. ATP pre-treated TG neurons displayed elevated [Ca2+ ]i and faster increase in responding to blockage of Na+ /Ca2+ exchanger by KB-R7943. Furthermore, mechanical stimulation of cultured TG neurons led to sustained elevation in [Ca2+ ]i in ATP pre-treated TG neurons, which is much less in naïve TG neurons, or is significantly reduced by Piezo2 inhibitor GsMTx4. These results indicated a pivotal role of Piezo2 in peripheral mechanical allodynia in the rat CCT model. Extracellular ATP, Ca2+ influx, and the cAMP-to-Epac1 signaling pathway synergistically contribute to the pathogenesis and the persistence of mechanical allodynia.


Asunto(s)
Adenosina Trifosfato/metabolismo , AMP Cíclico/metabolismo , Espacio Extracelular/metabolismo , Hiperalgesia/fisiopatología , Canales Iónicos/genética , Transducción de Señal , Traumatismos del Nervio Trigémino/fisiopatología , Animales , Señalización del Calcio , Factores de Intercambio de Guanina Nucleótido/metabolismo , Canales Iónicos/antagonistas & inhibidores , Masculino , Síndromes de Compresión Nerviosa/metabolismo , Síndromes de Compresión Nerviosa/fisiopatología , ARN Interferente Pequeño/farmacología , Ratas , Ratas Sprague-Dawley , Receptores Purinérgicos P2/efectos de los fármacos , Intercambiador de Sodio-Calcio/antagonistas & inhibidores , Traumatismos del Nervio Trigémino/metabolismo , Neuralgia del Trigémino
17.
Behav Brain Res ; 418: 113617, 2022 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-34606776

RESUMEN

Low back pain (LBP) is a major global burden in part due to the underlying pathophysiological mechanisms being poorly understood. A LBP rat model involving two injections of nerve growth factor (NGF, an endogenous pain-related neurotrophin) into trunk musculature was recently developed. Additional behavioral work in this NGF-LBP rat model is required to better characterize local and remote somatosensory alterations related to NGF-induced peripheral and central sensitization. This work characterizes the time-dependent development of hypersensitivity to trunk and hindpaw cutaneous mechanical stimulation and deep muscle mechanical hyperalgesia in adult male Sprague-Dawley rats (n = 6/group). Behavioral assays were performed at baseline (Day 0, D0), D2, D5 (pre- and 4 h post-2nd NGF or control injection), D7, D10, and D14 in NGF and control groups. Trunk and hindpaw cutaneous mechanical hypersensitivity were tested using von Frey filaments. Deep trunk mechanical hyperalgesia was determined using a small animal algometer. NGF rats demonstrated increased cutaneous sensitivity to ipsilateral trunk mechanical stimuli at D7, D10, and D14. NGF rats also demonstrated ipsilateral deep mechanical hyperalgesia on D2, D5 + 4 h, D7, D10, and D14. Cutaneous hypersensitivity was delayed compared to deep hyperalgesia in NGF rats. No additional sensory changes were noted. Together, these results indicate that male mechanical somatosensory changes develop primarily locally in the ipsilateral trunk following unilateral NGF injections. These findings contrast with a previous report in female rats using this NGF-LBP model showing more widespread (bilateral) hyperalgesia and remote mechanical hypersensitivity. Future studies will examine potential sex-related pain behavioral differences in the NGF model.


Asunto(s)
Conducta Animal/fisiología , Hiperalgesia/fisiopatología , Dolor de la Región Lumbar , Factor de Crecimiento Nervioso , Animales , Modelos Animales de Enfermedad , Femenino , Dolor de la Región Lumbar/inducido químicamente , Dolor de la Región Lumbar/fisiopatología , Masculino , Factor de Crecimiento Nervioso/administración & dosificación , Factor de Crecimiento Nervioso/efectos adversos , Ratas , Ratas Sprague-Dawley
18.
J Ethnopharmacol ; 283: 114532, 2022 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-34416296

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Qufeng Zhitong capsule (QFZTC) is a traditional Chinese medicine (TCM) clinically used for treating pain. However, the active ingredients of QFZTC and its pharmacological mechanism in the treatment of neuropathic pain (NP) remain unclear. AIM OF THE STUDY: We aimed to identify the active ingredients of QFZTC and reveal its target genes and underlying mechanism of action in NP. MATERIALS AND METHODS: High-performance liquid chromatography (HPLC) was used to identify the active ingredients of QFZTC. Network pharmacology analysis was conducted to determine the core targets and pathway enrichment of QFZTC. An NP mice model was established through chronic compression injury (CCI) surgery of the sciatic nerve, while von Frey instrumentation and a thermal stimulator were employed to measure the sensitivity of mice to mechanical and thermal stimuli. Immunofluorescence was used to observe the expression of TLR4 and p-P65 in microglia. Western blotting was used to detect the levels of protein expression of Iba-1, TLR4, MyD88, P65, p-P65, and c-Fos, while ELISA kits were used to detect the release of TNF-α, IL-6, and IL-1ß. RESULTS: Seven active ingredients were identified in QFZTC: gallic acid, loganylic acid, syringin, corilagin, loganin, ellagic acid, and osthole. Network analysis identified TLR4, TNF, IL6, IL1ß, and c-Fos as core targets, and Toll-like receptors and NF-κB as core signaling pathways. Treatment with QFZTC significantly relieved mechanical allodynia and thermal hyperalgesia in CCI mice models. CCI induced an increase in the expression of TLR4 and p-P65 in microglia, whereas QFZTC dose-dependently reduced the expression of Iba-1, TLR4, MyD88, and p-P65 in the spinal cord. QFZTC inhibited the expression of the c-Fos pain marker and reduced the expression of the TNF-α, IL-6, and IL-1ß inflammatory factors. CONCLUSION: We combined the active ingredients of QFZTC with network pharmacology research to clarify its biological mechanism in the treatment of NP. We demonstrated that QFZTC reduced NP in mice probably through regulating the spinal microglia via the TLR4/MyD88/NF-κB signaling pathway. Hence, QFZTC could be regarded as a potential drug for relieving NP.


Asunto(s)
Medicamentos Herbarios Chinos , Hiperalgesia , Neuralgia , Animales , Ratones , Cromatografía Líquida de Alta Presión , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/farmacología , Hiperalgesia/tratamiento farmacológico , Hiperalgesia/fisiopatología , Ratones Endogámicos C57BL , Microglía/efectos de los fármacos , Factor 88 de Diferenciación Mieloide/metabolismo , Farmacología en Red , Neuralgia/tratamiento farmacológico , Neuralgia/fisiopatología , FN-kappa B/metabolismo , Transducción de Señal/efectos de los fármacos , Receptor Toll-Like 4/metabolismo
19.
Brain Res Bull ; 178: 69-81, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34813897

RESUMEN

Recent studies have revealed that glial sigma-1 receptor (Sig-1R) in the spinal cord may be a critical factor to mediate sensory function. However, the functional role of Sig-1R in astrocyte has not been clearly elucidated. Here, we determined whether Sig-1Rs modulate calcium responses in primary cultured astrocytes and pathological changes in spinal astrocytes, and whether they contribute to pain hypersensitivity in naïve mice and neuropathic pain following chronic constriction injury (CCI) of the sciatic nerve in mice. Sig-1R was expressed in glial fibrillary acidic protein (GFAP)-positive cultured astrocytes. Treatment with the Sig-1R agonist, PRE-084 or neurosteroid dehydroepiandrosterone (DHEA) increased intracellular calcium responses in cultured astrocytes, and this increase was blocked by the pretreatment with the Sig-1R antagonist, BD-1047 or neurosteroid progesterone. Intrathecal administration of PRE-084 or DHEA for 10 days induced mechanical and thermal hypersensitivity and increased the number of Sig-1R-immunostained GFAP-positive cells in the superficial dorsal horn (SDH) region of the spinal cord in naïve mice, and these changes were inhibited by administration with BD-1047 or progesterone. In CCI mice, intrathecal administration of BD-1047 or progesterone at post-operative day 14 suppressed the developed mechanical allodynia and the number of Sig-1R-immunostained GFAP-positive cells that were increased in the SDH region of the spinal cord following CCI of the sciatic nerve. These results demonstrate that Sig-1Rs play an important role in the modulation of intracellular calcium responses in cultured astrocytes and pathological changes in spinal astrocytes and that administration of BD-1047 or progesterone alleviates the Sig-1R-induced pain hypersensitivity and the peripheral nerve injury-induced mechanical allodynia.


Asunto(s)
Astrocitos/metabolismo , Calcio/metabolismo , Hiperalgesia/metabolismo , Neuralgia/metabolismo , Neuroesteroides/metabolismo , Traumatismos de los Nervios Periféricos/metabolismo , Receptores sigma/metabolismo , Médula Espinal/metabolismo , Animales , Astrocitos/efectos de los fármacos , Células Cultivadas , Modelos Animales de Enfermedad , Hiperalgesia/tratamiento farmacológico , Hiperalgesia/fisiopatología , Ratones , Neuralgia/tratamiento farmacológico , Neuralgia/fisiopatología , Traumatismos de los Nervios Periféricos/tratamiento farmacológico , Traumatismos de los Nervios Periféricos/fisiopatología , Progesterona/farmacología , Receptores sigma/antagonistas & inhibidores , Médula Espinal/efectos de los fármacos , Médula Espinal/fisiopatología
20.
Int J Mol Sci ; 22(21)2021 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-34768835

RESUMEN

Pain is one of the most severe concerns in tongue cancer patients. However, the underlying mechanisms of tongue cancer pain are not fully understood. We investigated the molecular mechanisms of tongue cancer-induced mechanical allodynia in the tongue by squamous cell carcinoma (SCC) inoculation in rats. The head-withdrawal threshold of mechanical stimulation (MHWT) to the tongue was reduced following SCC inoculation, which was inhibited by intracisternal administration of 10Panx, an inhibitory peptide for pannexin 1 (PANX1) channels. Immunohistochemical analyses revealed that the expression of PANX1 was upregulated in the trigeminal spinal subnucleus caudalis (Vc) following SCC inoculation. The majority of PANX1 immunofluorescence was merged with ionized calcium-binding adapter molecule 1 (Iba1) fluorescence and a part of it was merged with glial fibrillary acidic protein (GFAP) fluorescence. Spike frequencies of Vc nociceptive neurons to noxious mechanical stimulation were significantly enhanced in SCC-inoculated rats, which was suppressed by intracisternal 10Panx administration. Phosphorylated extracellular signal-regulated kinase (pERK)-immunoreactive (IR) neurons increased significantly in the Vc after SCC inoculation, which was inhibited by intracisternal 10Panx administration. SCC inoculation-induced MHWT reduction and increased pERK-IR Vc neuron numbers were inhibited by P2X7 purinoceptor (P2X7R) antagonism. Conversely, these effects were observed in the presence of P2X7R agonist in SCC-inoculated rats with PANX1 inhibition. SCC inoculation-induced MHWT reduction was significantly recovered by intracisternal interleukin-1 receptor antagonist administration. These observations suggest that SCC inoculation causes PANX1 upregulation in Vc microglia and adenosine triphosphate released through PANX1 sensitizes nociceptive neurons in the Vc, resulting in tongue cancer pain.


Asunto(s)
Conexinas/metabolismo , Hiperalgesia/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neoplasias de la Lengua/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Dolor en Cáncer/patología , Carcinoma de Células Escamosas , Conexinas/antagonistas & inhibidores , Conexinas/fisiología , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Hiperalgesia/fisiopatología , Masculino , Microglía/metabolismo , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Proteínas del Tejido Nervioso/fisiología , Neuronas/metabolismo , Nociceptores/metabolismo , Dolor/metabolismo , Dolor/fisiopatología , Dimensión del Dolor , Umbral del Dolor/efectos de los fármacos , Ratas , Ratas Endogámicas F344 , Transducción de Señal , Lengua/metabolismo , Lengua/patología , Neoplasias de la Lengua/fisiopatología , Núcleo Espinal del Trigémino/metabolismo , Núcleo Espinal del Trigémino/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA